MegaX, introduce Enon Mask mega projects

Starship Update

February 26, 2024
BUILDING ON THE SUCCESS OF STARSHIP’S SECOND FLIGHT TEST

The second flight test of Starship and Super Heavy achieved a number of important milestones as we continue to advance the capabilities of the most powerful launch system ever developed.

On November 18, 2023, Starship successfully lifted off at 7:02 a.m. CT from Starbase in Texas. All 33 Raptor engines on the Super Heavy Booster started up successfully and, for the first time, completed a full-duration burn during ascent. Starship then executed a successful hot-stage separation, the first time this technique has been done successfully with a vehicle of this size.

Following stage separation, Super Heavy initiated its boostback burn, which sends commands to 13 of the vehicle’s 33 Raptor engines to propel the rocket toward its intended landing location. During this burn, several engines began shutting down before one engine failed energetically, quickly cascading to a rapid unscheduled disassembly (RUD) of the booster. The vehicle breakup occurred more than three and a half minutes into the flight at an altitude of ~90 km over the Gulf of Mexico.

The most likely root cause for the booster RUD was determined to be filter blockage where liquid oxygen is supplied to the engines, leading to a loss of inlet pressure in engine oxidizer turbopumps that eventually resulted in one engine failing in a way that resulted in loss of the vehicle. SpaceX has since implemented hardware changes inside future booster oxidizer tanks to improve propellant filtration capabilities and refined operations to increase reliability.

At vehicle separation, Starship’s upper stage successfully lit all six Raptor engines and flew a normal ascent until approximately seven minutes into the flight, when a planned vent of excess liquid oxygen propellant began. Additional propellant had been loaded on the spacecraft before launch in order to gather data representative of future payload deploy missions and needed to be disposed of prior to reentry to meet required propellant mass targets at splashdown.

A leak in the aft section of the spacecraft that developed when the liquid oxygen vent was initiated resulted in a combustion event and subsequent fires that led to a loss of communication between the spacecraft’s flight computers. This resulted in a commanded shut down of all six engines prior to completion of the ascent burn, followed by the Autonomous Flight Safety System detecting a mission rule violation and activating the flight termination system, leading to vehicle breakup. The flight test’s conclusion came when the spacecraft was as at an altitude of ~150 km and a velocity of ~24,000 km/h, becoming the first Starship to reach outer space.

SpaceX has implemented hardware changes on upcoming Starship vehicles to improve leak reduction, fire protection, and refined operations associated with the propellant vent to increase reliability. The previously planned move from a hydraulic steering system for the vehicle’s Raptor engines to an entirely electric system also removes potential sources of flammability.

The water-cooled flame deflector and other pad upgrades made after Starship’s first flight test performed as expected, requiring minimal post-launch work to be ready for vehicle tests and the next integrated flight test.

Following the flight test, SpaceX led the investigation efforts with oversight from the FAA and participation from NASA, and the National Transportation Safety Board.

Upgrades derived from the flight test will debut on the next Starship and Super Heavy vehicles to launch from Starbase on Flight 3. SpaceX is also implementing planned performance upgrades, including the debut of a new electronic Thrust Vector Control system for Starship’s upper stage Raptor engines and improving the speed of propellant loading operations prior to launch.

More Starships are ready to fly, putting flight hardware in a flight environment to learn as quickly as possible. Recursive improvement is essential as we work to build a fully reusable launch system capable of carrying satellites, payloads, crew, and cargo to a variety of orbits and Earth, lunar, or Martian landing sites.


Rewatch

Upcoming Launch

CRS-25 Mission

SpaceX’s 25th Commercial Resupply Services (CRS) mission to the International Space Station (ISS) is slated for launch no earlier than July 14 at 8:44 p.m. ET from Kennedy Space Center in Florida. The ISS National Laboratory is sponsoring more than 15 payloads on this mission that will bring value to our nation and drive a sustainable market in low Earth orbit.

Below are highlights of ISS National Lab-sponsored research investigations that are part of the SpaceX CRS-25 mission to the space station.

Rewatch

Recent Launch

Starlink Mission

IMPROVING STARLINK'S LATENCY

MAR 07, 2024

Starlink engineering teams have been focused on improving the performance of our network with the goal of delivering a service with stable 20 millisecond (ms) median latency and minimal packet loss.

Over the past month, we have meaningfully reduced median and worst-case latency for users around the world. In the United States alone, we reduced median latency by more than 30%, from 48.5ms to 33ms during hours of peak usage. Worst-case peak hour latency (p99) has dropped by over 60%, from over 150ms to less than 65ms. Outside of the United States, we have also reduced median latency by up to 25% and worst-case latencies by up to 35%.

Read More...

Rewatch

Recent Mission

SES-22 Mission

SpaceX launches SES-22 communications satellite, lands rocket at sea

It was SpaceX's 27th liftoff of the year.

Recent Launch

Globalstar FM15 Mission

Rewatch

Starship to add NASA astronauts on the moon

NASA is still hoping to carefully lower astronauts to the lunar surface from a SpaceX Starship, marking humanity's triumphant return after over half a century.

At least, that's according to the plan as it currently stands. As part of its Artemis 3 mission, NASA is looking to launch a crew of four to the Moon as early as 2026 onboard its Orion capsule and then make its descent to the surface in a Starship.

Around five years later, NASA wants to leverage the help of both SpaceX and Jeff Bezos' space company Blue Origin to ferry cargo landers to the lunar surface.

While the mission, dubbed Artemis 7, is slated for no earlier than 2031, the space agency is already digging in. A number of recently released renders show off both Blue Origin's proposed cargo lander as well as SpaceX's Starship lowering a Moon rover to the surface with the help of an exterior elevator.

It's a fascinating glimpse of what our future efforts to establish a more permanent presence on the lunar surface could look like — but needless to say, the agency and its private partners have a mountain of work to do before the renders can ever be turned into reality.

Rewatch